استفاده از روش ترکیبی شبکه های عصبی مصنوعی و الگوریتم های ژنتیک در معکوس سازی داده های مدل چهار لایه ای گمانه زنی الکتریکی

نویسندگان

بهشاد جدیری شکری

عضو هیئت علمی دانشگاه صنعتی همدان فرامرز دولتی ارده جانی

عضو هیات علمی دانشکده مهندسی معدن، دانشگاه تهران علی مرادزاده

عضو هیئت علمی دانشکده مهندسی معدن، دانشگاه تهران روح الله احمدی

فارغ التحصیل کارشناسی ارشد دانشکده معدن، نفت و ژئوفیزیک، دانشگاه شاهرود

چکیده

در مقاله حاضر، مدل سازی معکوس مدل چهار لایه ای گمانه زنی الکتریکی (شامل 8 نوع منحنی متفاوت)، با استفاده از یک روش ترکیبی شبکه های عصبی مصنوعی و الگوریتم ژنتیک، انجام شده است. برای این منظور، ابتدا، 2000 داده مصنوعی مقاومت ویژه برای حالت های مختلف گمانه زنی الکتریکی با استفاده از نرم افزار resix-ip، تولید شد. سپس، دسته بندی انواع منحنی های مربوط به مدل های چهار لایه ای مقاومت ویژه با استفاده از روش شبکه های عصبی مصنوعی پیش خور با الگوریتم پس انتشار خطا، مبتنی بر سعی و خطا در آموزش داده ها، بنحو مطلوبی انجام شد. شبکه بهینه طبقه بندی کننده، از22 نرون لایه ورودی، 33 نرون لایه میانی و 8 نرون لایه خروجی، تشکیل شده بود. در ادامه با استفاده از روش الگوریتم های ژنتیک، معکوس سازی داده های مقاومت ویژه برای مدل چهار لایه ای گمانه زنی الکتریکی انجام شد. نتایج بدست آمده مقادیر مقاومت ویژه، نشان دهنده تطابق بسیار مطلوب بین خروجی روش الگوریتم ژنتیک و داده های آزمایشی بودند. بطور نمونه، ضرایب همبستگی بسیار بالا (99/0، 82/0، 83/0 و 97/0) و (99/0، 92/0، 93/0 و 97/0)، مقادیرمقاومت ویژه در لایه های اول تا چهارم، بترتیب در مدل های منحنی مربوط به انواع aa و ak، بخوبی بیانگر این تطابق مطلوب است. از طرفی، مقادیر ضخامت لایه ها در لایه های اول همه منحنی ها با استفاده از روش الگوریتم های ژنتیک، بصورت مناسبی تخمین زده شده اند، در حالیکه، مقادیر ضرایب همبستگی آنها در لایه های دوم (با 81/0 و 88/0) و سوم (79/0 و 71/0) این نوع از منحنی ها، نشان دهنده کارآیی نسبی این روش است.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مدل سازی و پیش بینی کارایی بانک های دولتی و خصوصی ایران با استفاده از مدل های شبکه عصبی مصنوعی، شبکه عصبی فازی و الگوریتم ژنتیک

دستیابی به رشد مستمر و مداوم اقتصادی و به موجب آن توسعه اقتصادی را می توان از زمره اهدافی قلمداد نمود که تمام کشورها در پی دستیابی به آن می باشند. در این راستا بانک ها نقش بسیار مهمی در پیشرفت و توسعه اقتصادی هر کشور ایفا می نمایند. در حال حاضر با توجه به تعداد قابل توجه بانک های دولتی و خصوصی در کشور پیش بینی کارایی آن ها اهمیت ویژه ای پیدا کرده است. هدف از این پژوهش، مدلسازی و پیش بینی کارایی...

متن کامل

پیش بینی مصرف انرژی بخش کشاورزی ایران با استفاده از مدل ترکیبی الگوریتم ژنتیک و شبکه های عصبی مصنوعی

هدف از این مقاله ارزیابی الگوی ترکیبی شبکه­های عصبی مصنوعی و الگوریتم ژنتیک در پیش بینی تقاضای انرژی بخش کشاورزی ایران می­باشد. برای این منظور، از داده­های سالانه مصرف انرژی بخش کشاورزی کشور به عنوان متغیر خروجی مدل­های پیش­بینی و از داده­های سالانه جمعیت کل کشور و کل تولیدات بخش کشاورزی کشور به عنوان متغیرهای ورودی مدل­های پیش­بینی استفاده شد. در پایان به منظور مقایسه نتایج پیش­بینی مدل ترکیبی...

متن کامل

استفاده از روش ترکیبی شبکه‌های عصبی مصنوعی و الگوریتم‌های ژنتیک در معکوس‌سازی داده‌های مدل چهار لایه‌ای گمانه‌زنی الکتریکی

در مقاله حاضر، مدل‌سازی معکوس مدل چهار لایه‌ای گمانه‌زنی الکتریکی (شامل 8 نوع منحنی متفاوت)، با استفاده از یک روش ترکیبی شبکه‌های عصبی مصنوعی و الگوریتم ژنتیک، انجام شده است. برای این منظور، ابتدا، 2000 داده مصنوعی مقاومت‌ویژه برای حالت‌های مختلف گمانه‌زنی الکتریکی با استفاده از نرم‌افزار Resix-IP، تولید شد. سپس، دسته‌بندی انواع منحنی‌های مربوط به مدل‌های چهار لایه‌ای مقاومت ویژه با استفاده از ...

متن کامل

شناسایی دستکاری قیمت سهام از طریق مدل ترکیبی الگوریتم ژنتیک – شبکه عصبی مصنوعی و مدل SQDF

هدف این پژوهش، شناسایی دستکاری قیمت سهام در بورس اوراق بهادار تهران می­باشد که از طریق مدل ترکیبی الگوریتم ژنتیک-شبکه عصبی مصنوعی (ANN-GA)[1] و مدل تابع تفکیکی درجه دوی تعدیل شده (SQDF)[2] انجام گرفته است. در این پژوهش از متغیرهای قیمت، حجم معاملات و سهام شناور آزاد برای تطبیق نتایج مدل و داده­های واقعی از دستکاری قیمت استفاده شده است. در مدل ترکیبی ابتدا داده­های مربوط به 316 شرکت از نخستین رو...

متن کامل

مدل سازی خشک کردن اسمزی زردآلو با استفاده از الگوریتم ژنتیک - شبکه عصبی مصنوعی

ایران از نظر تولید زردآلو در جهان مقام دوم را دارد و مطالعه عوامل موثر بر خشک کردن این میوه و مقدار تاثیر آنها امری ضروری می باشد. لذا در این مطالعه تاثیر دمای محلول اسمزی در محدوده °C 25 تا °C 65، در مدت زمان 30 تا 120 دقیقه و غلظت محلول اسمزی در محدودۀ 30 تا 60 درصد (وزنی/وزنی) بر پارامترهای کاهش وزن، کاهش آب، جذب مواد جامد و نسبت دفع آب به جذب مواد جامد در طی خشک کردن اسمزی زردآلو مورد بررسی...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
مهندسی معدن

جلد ۱۱، شماره ۳۰، صفحات ۹۳-۱۰۴

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023